

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A New Antimicrobial Sesquiterpene Lactone from *Artemisia giralda*

W. F. Zheng^a; R. X. Tan^a; L. Yang^b; Z. L. Liu^a

^a Institute of Biotechnology, Department of Biological Sciences & Technology, Nanjing University, Nanjing, P. R. China ^b National Laboratory of Applied Organic Chemistry at Lanzhou University, Lanzhou, P. R. China

To cite this Article Zheng, W. F. , Tan, R. X. , Yang, L. and Liu, Z. L.(1996) 'A New Antimicrobial Sesquiterpene Lactone from *Artemisia giralda*', Spectroscopy Letters, 29: 8, 1589 — 1597

To link to this Article: DOI: 10.1080/00387019608007150

URL: <http://dx.doi.org/10.1080/00387019608007150>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**A NEW ANTIMICROBIAL SESQUITERPENE LACTONE FROM
*ARTEMISIA GIRALDII***

Key Words: *Artemisia giraldii*, Compositae, eudesmanolide, antimicrobial activity

^aW. F. Zheng, ^aR. X. Tan*, ^bL. Yang and ^aZ. L. Liu

^a) *Institute of Biotechnology, Department of Biological Sciences & Technology, Nanjing University, Nanjing 210093, P. R. China*
^b) *National Laboratory of Applied Organic Chemistry at Lanzhou University, Lanzhou 730000, P. R. China*

ABSTRACT

A new antimicrobial eudesmanolide, 1-oxo-8 α -hydroxy-11 α H-eudesm-4-en-12,6 α -olide (1), was isolated from a medicinal plant *Artemisia giraldii* and its structure was elucidated by spectroscopic methods (IR, MS, ¹H NMR, ¹³C NMR, ¹H-¹H COSY and NOESY). Antimicrobial bioassay indicated that this compound inhibited the growth of human pathogenic bacteria *Staphylococcus aureus*, *Bacillus subtilis* and *Escherichia coli* as well as human opportunistic pathogenic fungi *Candida tropicalis*, *Gecotrichum candidum*, *Aspergillus flavus* and *A. niger*.

*Address correspondence to Prof. R. X. Tan at Nanjing University.

INTRODUCTION

Previously, we have studied Tibetan drug *Artemisia giraldii* and resulted in the characterization of two new antimicrobial flavones [1]. The mother liquor yielded was shown to contain further minor antimicrobial non-aromatic constituent. This observation prompted us to reinvestigate this species and we here report a new sesquiterpene lactone and its antimicrobial activity.

EXPERIMENTAL

NMR experiments were conducted on a Bruker AM400 FT-IR spectrometer with ¹H and ¹³C spectra recorded at 400 MHz and 100 MHz, respectively. IR spectra were measured on a 5DX-FT IR spectrometer. Mass spectra were obtained on a VG ZAB-HS mass spectrometer.

The aerial parts of *A. giraldii* were collected in July 1992 in Wenfeng County, Gansu Province, P. R. China. A voucher specimen (LZU 403) identified by Prof. G. L. Zhang was deposited in the Herbarium of the Department of Biology, Lanzhou University, Lanzhou, P. R. China. The well-chopped, air-dried plant material (1.1 kg) was extracted twice for 24 h with MeOH/Et₂O/petroleum ether (1:1:1) at room temperature. The extract was defatted followed by CC separation as reported previously [2]. Further column chromatography (silica gel) of the fifth fraction yielded 4 parts (I-IV). The part I was subjected to the Sephadex LH-20 column with methanol and the flow rate was adjusted to 3 drops/min. A pure compound was obtained as an oil (100 mg).

Qualitative antimicrobial activity control

The paper disk diffusion method was used. Inocula consisted of 24 h cultures of bacteria grown on Nutrient Agar at 37 °C, or 72 h cultures of fungi grown on Potato Dextrose Agar at 25 °C. The samples were dissolved in EtOH/H₂O (2:9). Paper disks (ϕ: 5 mm) were impregnated with the solutions and placed onto Petri

dishes containing NA for *Staphylococcus aureus* (NUB*-003), *Escherichia coli* (NUB-013), *Bacillus subtilis* (NUB-017) and PDA for *Candida tropicalis* (NUB-8868), *Geotrichum candidum* (NUB-9137), *Aspergillus flavus* (NUB-8721) and *A. niger* (NUB-9122). After incubation for 18-24 h for bacteria or 72 h for fungi, the inhibition zones (mm) were measured and the microorganisms which were inhibited were tested for minimal inhibitory concentration (MIC).

Determination of MIC's by agar dilution procedure

Aqueous EtOH solutions of compound 1 were incorporated into the solid medium, with each plate containing a different concentration of the compound. The inocula prepared according to the standard methods were applied by standardized loops. After 24 h incubation at 35 °C (bacteria) and 72 h at 25 °C (fungi), the plates were examined for growth and MIC was determined as the lowest concentration that inhibited the growth. The results were shown in Table 1.

Spectroscopic features:

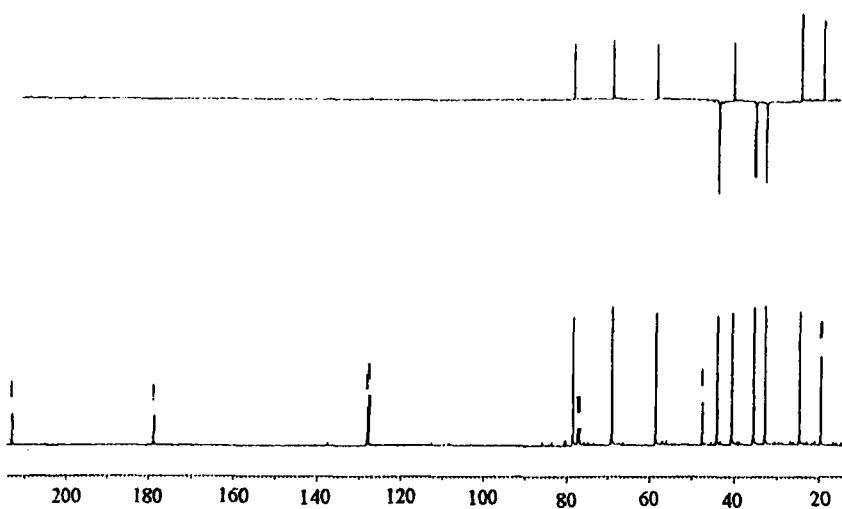
IR (CCL₄): 3440, 2950, 1760, 1700, 1610 cm⁻¹; EIMS *m/z* (rel. int.): 264 (28; [M]⁺), 246 (22; [M-H₂O]⁺), 218 (12), 95 (42), 61 (100). ¹H and ¹³C NMR, see Table 2.

RESULTS AND DISCUSSION

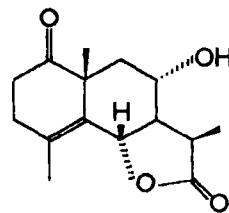
The mass spectrum of compound 1 showed the molecular ion peak at *m/z* 264, in agreement with a molecular formula C₁₅H₂₀O₄ evidenced from the NMR data (Table 2 and Fig. 1). The IR bands (3400, 1750, 1710 and 1610 cm⁻¹) indicated the presence of hydroxyl, lactone and ketone carbonyl groups. In the ¹H NMR spectrum (Table 2), the methyl signals at δ 1.26 (s), 1.31 (d, *J* = 7.2 Hz), 1.69 (br

* NUB: culture collection center of microorganisms, Department of Biological Science and Technology, Nanjing University.

Table 1 Minimal inhibitory concentration ($\mu\text{g ml}^{-1}$) of **1** against a range of microorganisms


species	A	B	C	D	E	F	G*
MIC	<50	>200	100	<50	75	<50	75

* A: *Staphylococcus aureus*, B: *Bacillus subtilis*
 C: *Escherichia coli*, D: *Candida tropicalis*
 E: *Gecotrichun candidum*, F: *Aspergillus nigers*,
 G: *Aspergillus flavus*


Table 2 ^1H and ^{13}C NMR data of **1** (CDCl_3 , 25 $^{\circ}\text{C}$)

C	^1H (J in Hz)	^{13}C (DEPT)
1		212.66 (C)
2 α	2.60 m*	32.81 (CH ₂)
2 β	2.35 m*	
3 α	2.40 m*	35.39 (CH ₂)
3 β	2.50 m*	
4	—	127.92 (C)
5	—	127.53 (C)
6	4.54 d (11.5)	78.48 (CH)
7	1.75 ddd (11.5, 10.5, 7.0)	58.47 (CH)
8	3.95 dt (10.4, 4.6)	68.99 (CH)
9 α	1.39 dd (13.2, 10.5)	40.52 (CH ₂)
9 β	2.03 dd (13.2, 4.6)	
10	—	47.45 (C)
11	2.53 dq (7.2, 7.0)	43.96 (CH)
12	—	178.66 (C)
13	1.31 d (7.2)	14.04 (CH ₃)
14	1.26 s	24.55 (CH ₃)
15	1.69 br s	19.47 (CH ₃)

* Not the first order

FIG. 1. ^{13}C NMR and DEPT of compound 1

s) and the doublet at δ 4.54 (br d, J = 11.5 Hz) suggested an eudesmanolide framework similar to those of 8α -hydroxytaurin [3, 4] and ψ -santonin [5, 6]. The downfield angular methyl singlet at δ 1.26 (s) revealed the presence of 1-ktone group while the existence of the 4,5-double bond was indicated by the broadened methyl singlet of H-15 at δ 1.69 [7, 8] which, as illustrated by the ^1H - ^1H COSY spectrum (Fig. 2), showed a clear homoallylic coupling with H-6 at δ 4.54. Further scrutiny of the COSY spectrum showed that H-6 signal coupled with the signal of H-7 at δ 1.75 (ddd, J = 11.5, 10.5, 7.0 Hz) which were actually split by a double quartet of H-11 at δ 2.53 and a double triplet of H-8 at 3.95. The signals at 1.39 (dd, J = 13.2, 10.5 Hz) and 2.03 (dd, J = 13.2, 4.6 Hz) coupled simultaneously with H-8, were assigned to H-9 α and H-9 β , respectively. A long range coupling was also observed between H-6 signal at δ

The molecular structure of 1

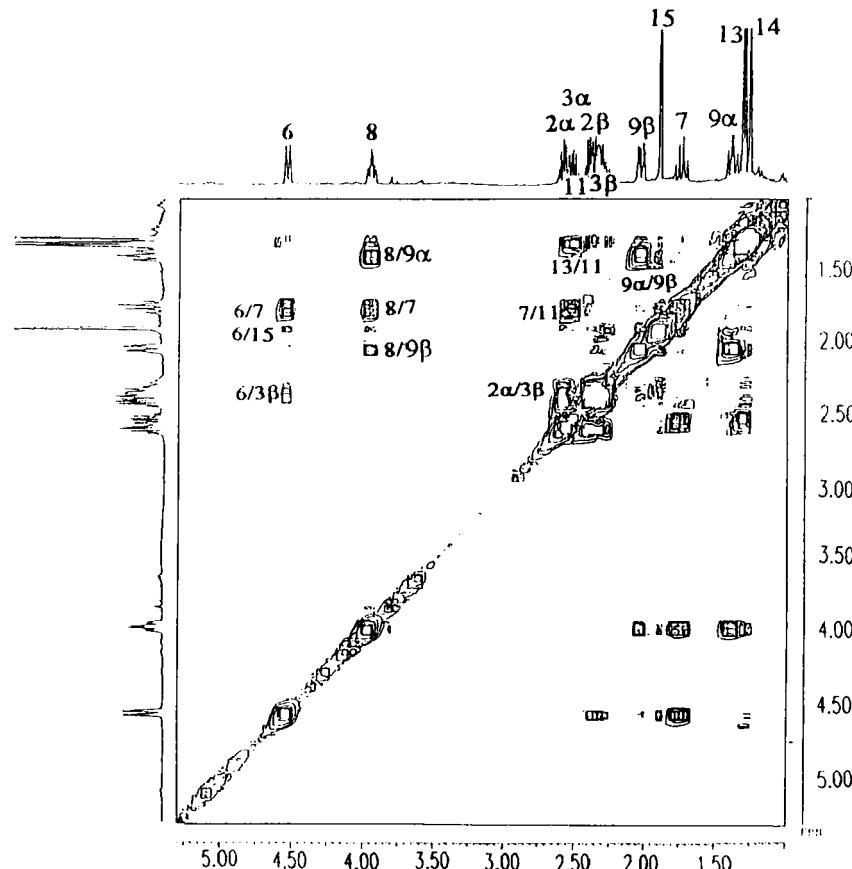


FIG. 2. ¹H-¹H COSY spectrum of compound 1 with several important correlations indicated on the map.

4.54 and multiplets at δ 2.46 and 2.37 which were thus assigned to H-3 α and H-3 β , respectively. The multiplets at δ 2.60 and 2.41 *ortho*-coupled with H-3 α and H-3 β were attributed to H-2 α and H-2 β . The discerned coupling sequence confirmed the assumption of ketone carbonyl group at C-1. The NOESY spectrum clearly indicated NOE effects of H-6 with H-14, H-13, H-8 establishing the formulated stereochemistry (Fig. 3). Comparison of the ¹³C NMR data of

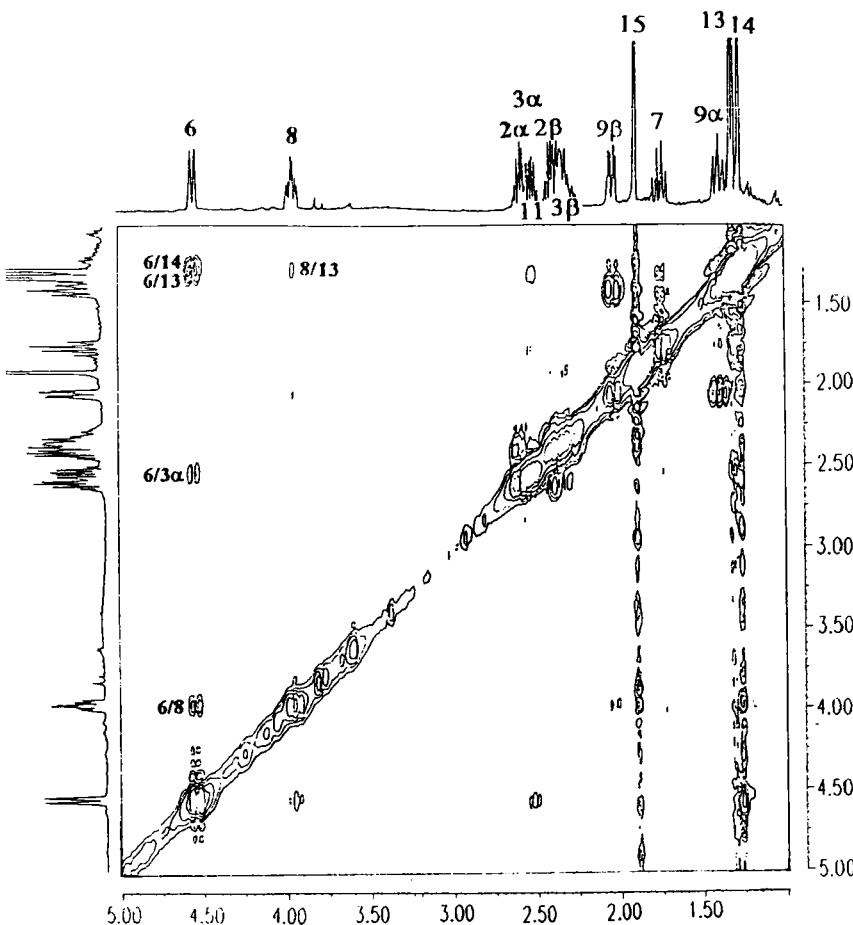


FIG. 3. NOESY spectrum of compound 1 with some decisive cross peaks marked directly on the map.

compound 1 with those of 8α -hydroxytaurin and ψ -santonin reinforced the stereochemical difference among these analogs. Particularly, the chemical shift of C-11 in 1 was shifted downfield by 3.14 ppm relative to that of 8α -hydroxytaurin [3] while the resonance line due to C-6 of 1 appeared at δ 78.48, 1.58 ppm downfield from that of ψ -santonin [5]. In conclusion, compound 1 was 1-oxo- 8α -hydroxy- 11α H-eudesm-4-en-12,6 α -olide.

The antimicrobial bioassay of compound 1 indicated a strong inhibition to the growth of *Staphylococcus auerus* (MIC: <50 μ g), *Escherichia coli* (MIC: 100 μ g), *Candida tropicalis* (MIC: <50 μ g), *Geocotrichum candidum* (MIC: 75 μ g), *Aspergillus nigers* (MIC: <50 μ g) and *A. flavus* (MIC: 75 μ g) (Table 1).

ACKNOWLEDGMENT

This work was financed by the Trans-Century Training Program Foundation for the Talents by the State Education Commission.

REFERENCES

1. Zheng, W. F., Tan, R. X., Yang, L., Liu, Z. L. Two Flavones from *Artemisia Giraldii* and their Antimicrobial Activity. *Planta Medica* 1996; **62**: at the proof stage.
2. Wang, W. Z., Tan, R. X., Yao, Y. M. Wang, Q., Jiang, F. X. Sesquiterpene lactones from *Ajania fruticulosa*. *Phytochemistry* 1994; **37**: 1347-1349.
3. Mercli, A. H., Jakupovic, J., Bohlmann, F., Damadyan, B., Ozhatay, N., Cubukcu, B. Eudesmanolides from *Artemisia santonicum*. *Planta Medica* 1988; **54**: 447- 449.
4. Moss, G. P., Pregosin, P. S., Randall, E. W. Assignments in the Carbon-13 Fourier Spectra of Eudesmaneolides. *J. Chem. Soc. Perkin. I* 1974; 1525-1527.

5. Marco, J. A., Sanz-Cervera, J. F., Pareja, J. M., Sancenon, P. F., Valles-Xirau, J. Sesquiterpene Lactones from North African *Artemisia* Species. *Phytochemistry* 1994, **37**: 477-485.
6. Pregosin, P. S., Randall, E. W., McMurry, T. B. H. ^{13}C Fourier Studies. The Dependence of the Carbon-13 Chemical Shifts in Santonin Derivatives. *J. Chem. Soc. Perkin I.* 1972; 299-301.
7. Sanz, J. F., Marco, J. A. New Eudesmane Derivatives from *Artemisia tornefortiana*. *Liebigs Ann. Chem.* 1990; 541-545.
8. Sanz, J. F., Marco, J. A. Sesquiterpene lactones from *Artemisia caerulescens* subsp. *gargantae*. *Phytochemistry* 1990; **29**: 2913-2917

Received: May 14, 1996

Accepted: June 24, 1996